JOINT ACOUSTIC UNIT DESIGN AND LEXICON GENERATION

M. Bacchiani

M. Ostendorf

Electrical and Computer Engineering Department, Boston University, 8 St. Mary’s St., Boston, MA, 02215, USA

ABSTRACT

Although most parameters in a speech recognition system
are estimated from data by use of an objective function,
the unit inventory and lexicon are generally hand crafted
and therefore unlikely to be optimal. This paper proposes
a joint solution to the related problems of learning a unit
inventory and corresponding lexicon from data. The pro-
posed algorithm performs comparably to a state-of-the-art
phone-based system on a speaker independent read speech
task with moderate vocabulary size.

1. INTRODUCTION

Large vocabulary speech recognition systems typically rep-
resent lexical entries in terms of sub-word units, for which
acoustic models can be reliably estimated. Part of the sys-
tem design is therefore to decide on a suitable unit inventory
and define the mappings from lexical entries in the vocab-
ulary to linear strings or networks of units (i.e. define the
lexicon). This problem is simplified in most systems by us-
ing phone-based units and a hand-crafted lexicon. In order
to limit the complexity of the recognition search, most sys-
tems use single linear strings for the majority of the lexical
entries in the vocabulary and very few linear strings for
the remaining entries. Although the parameters of the unit
models are generally estimated from data using an objective
function such as maximum likelihood (ML), no such func-
tion is used in the unit inventory and lexicon design. Given
the lack of a clear objective in this part of the system design,
the resulting unit inventory and lexicon are unlikely to be
optimal in terms of the objective function used throughout
the design of the rest of the system.

Even though the unit inventory and lexicon definition
is suboptimal, the use of mixture distributions in the unit
models together with parameter estimation techniques have
proven successful in read speech tasks. When this system
design algorithm is applied to spontaneous speech tasks
however, severe performance degradation compared to read
speech tasks is observed. Where mixture distributions in
the unit models for read speech were able to capture the
acoustic variability within the suboptimally defined units,
the increased acoustic variability in spontaneous speech
makes this approach problematic because of the increased
confusability between units.

An alternative to manual derivation of a unit inventory
and lexicon is to learn them from data. A unit derived

in this way is generally referred to as an Acoustic Sub-
Word Unit (ASWU). Over the last decade, a number of
researchers have looked into this problem [1, 2, 3, 4] and
found algorithms that automatically define model invento-
ries and estimate unit model parameters. The related prob-
lem of defining a lexicon in terms of these ASWUs has also
received attention, e.g. [5, 6]. To derive a lexicon of linear
string pronunciations, all these approaches start by finding
a number of candidate pronunciations for each lexical entry
in the vocabulary based on the pronunciations seen across
training tokens for the target lexical entry. These candidate
pronunciations are then evaluated with all training tokens,
and an objective function is used to determine the optimal
candidate.

One problem with this approach is that the unit inventory
and lexicon design problems are clearly related — acoustic
models are no longer optimal after the pronunciations are
restricted. This problem is easily addressed by iterative re-
estimation of the acoustic model and the pronunciations, as
in [7]. A bigger problem, not addressed in previous work, is
that for tasks with a lot of pronunciation variability in the
initial labeling of tokens, it is expensive to determine the op-
timal pronunciation among the large number of candidates
and difficult to rule out cases when the vast majority occur
only once. Furthermore, the optimal pronunciation may
not even be among the observed candidates. Cases where a
large number of candidate pronunciations per lexical entry
can be expected include speaker-independent recognition,
where pronunciation variability would be a consequence
of speaker differences, and/or large vocabulary recognition
where a large inventory of acoustic units (analogous to poly-
phonic HMM states) is needed.

Here we describe a joint unit inventory and lexicon design
algorithm that addresses the problem of initial pronuncia-
tion variability by introducing lexical constraints into the
unit inventory design. By designing the units and lexicon
jointly, the derived unit models are matched to the lexi-
con. Section 2 describes the algorithm in detail. In section
3, experimental results on the DARPA Resource Manage-
ment (RM) database are described. Finally, the results are
discussed in section 4.

2. ALGORITHM

The two basic algorithmic steps of any unit inventory de-
sign algorithm are an acoustic segmentation followed by a
clustering step to define the unit inventory, e.g. [1, 2, 7].

The key elements that differ in our approach are the use of
pronunciation-related constraints in unit design, the consis-
tent use of a maximum likelihood objective function, and
progressive unit inventory and model refinement.

To jointly solve the unit inventory and lexicon design
problem, the unit design algorithm described in [4] is mod-
ified such that it operates under a set of constraints asso-
ciated with the lexicon. Assuming a linear pronunciation
model, the unit inventory design is constrained to associate
the same sequence of units with every token of a particular
lexical entry. In particular, two constraints are introduced.
After the acoustic segmentation, pronunciation length con-
sistency is enforced such that all training tokens of a lexical
entry contain the same number of segments. Then before
clustering, a pronunciation consistency constraint is intro-
duced by grouping the segments in the different training
tokens of a lexical entry according to their position in the
lexical entry, taking advantage of the pronunciation length
consistency. After completion of the clustering step, the lex-
icon is implicitly defined, since the data from different train-
ing tokens representing the same position within a lexical
entry are assigned to a single cluster. In addition, since the
maximum likelihood objective function is used, the acoustic
model parameters are also defined as a result of clustering.
Section 2.1 describes the segmentation and clustering with
the introduction of constraints in more detail.

Progressive unit refinement is important for at least three
reasons. First, once data is clustered, the segmentation that
the initial units were based on may no longer be appropri-
ate. Section 2.2 describes how the unit model inventory and
corresponding segmentation can be refined further using re-
training. Second, even phone-based systems benefit from
iterative clustering techniques for increasing the acoustic
model complexity, and the analogous solutions for ASWUs
are described in Section 2.3. Finally, there is the issue of
matching the temporal resolution of units to the size of the
unit inventory, which is addressed in Section 2.4.

2.1. Initial unit inventory and lexicon design

The initial inventory and lexicon design is a three step pro-
cess. The first two steps provide a segmentation in which
all training tokens of a lexical entry contain the same num-
ber of segments. Finally in the third step, the segments
are clustered using a pronunciation consistency constraint
to define the unit inventory and lexicon. The segmentation
and clustering algorithms are implemented for polynomial
mean trajectory segment models in general [4, 8], but for
simplicity the experiments and equations given here corre-
spond to the special case of a hidden Markov model, i.e. a
constant mean trajectory.

The first step is unconstrained acoustic segmenta-
tion. The acoustic segmentation functions as an initializa-
tion of the algorithm. Taking an approach similar to that
in [5], the maximum likelihood segmentation of the train-
ing data is found by use of dynamic programming (DP).
Let x; be a d-dimensional observation vector, such as a vec-
tor of cepstral coefficients representing a window of speech
at time ¢. The unconstrained acoustic segmentation algo-
rithm involves recursive updating for every time ¢ and every

allowable number of segments n:

= —1,n—-1
o(t,m) i lman 27 St~ lmin plr=1n =1+
log p(xT7"'7$t|uT,t72)]7 (1)

where lymin and lmer denote minimum and maximum seg-
ment lengths. In addition to updating §(¢,n) the index 7
that maximizes equation 1 is stored allowing the most likely
segmentation to be found in the end by tracing back. The
(generalized) likelihood of the segments during the DP is
computed using a multivariate Gaussian model with a single
diagonal covariance ¥ used for all the segments. This co-
variance matrix can be estimated either on a per utterance
basis or from the entire training corpus. The mean param-
eter of the Gaussian model is computed from the hypoth-
esized segments; the constant mean model corresponds to
the assumption that speech is piecewise stationary. During
segmentation, the likelihood increases monotonically with
the number of allowable segments. We control the aver-
age number of segments by setting a fixed threshold on the
average likelihood per frame, which controls the temporal
resolution (average state duration) of the resulting system.

Next, we introduce a pronunciation length con-
straint. The acoustic segmentation is aligned with seg-
mentation times of lexical entries. Each acoustic segment
is assigned to the lexical-entry token with which it overlaps
most. For each lexical entry, the median of the number of
acoustic segments over all training tokens is used to define
the pronunciation length. The training data is then seg-
mented again using DP (eqn. 1) under the constraints that:

e Each lexical entry boundary coincides with an acoustic
segment boundary.

e The number of acoustic segments for a lexical item is
equal to the median pronunciation length.

In the resulting segmentation, all training tokens of a lexical
entry have the same number of segments.

The final step is maximum likelihood clustering. The
segments resulting from the second step of the algorithm are
clustered to define the unit inventory. The clustering algo-
rithm used here differs from that used in [2, 5, 7] in that
maximum likelihood is used as an objective rather than
minimum Euclidean distance. Specifically, the repartition
step involves computing the likelihood of segments given
the model parameters of a cluster, i.e. a negative log likeli-
hood “distance”. The cluster re-estimation procedure con-
sists of finding the ML parameter estimates of a Gaussian
distribution from the data contained in the cluster. Clus-
ter centroids therefore directly represent unit models and
clustering addresses both the inventory and model design
problems, whereas in [2, 5, 7] unit model parameters had
to be estimated in a separate step from the data partition
defined by clustering.

Before clustering, the data is grouped to ensure pronun-
ciation consistency. This grouping is implemented by com-
puting a sufficient statistic for each collection of segments
originating from different training tokens in the same po-
sition within a lexical entry. The sufficient statistics for
the constant mean model are the sample mean p, and co-
variance X, and the total number of vector observations

contained within the group IV,. These sufficient statistics
are stored for each unique position within each unique lex-
ical entry: if there are V entries in the vocabulary and the
median pronunciation length is R, the data is grouped into
V R groups. These sufficient statistics will be referred to as
atomic group sufficient statistics. As the sufficient statistic
representations of these atomic groups cannot be split in
clustering, this grouping ensures the pronunciation consis-
tency.

Let a group of K segment observations X, =
{x1,..., XK}, of lengths {L1,---,Lk}, have sufficient
statistics (4p, Zp, Np) where N, = S | L;. The likelihood
distance of the group with respect to the cluster with pa-
rameters p. and Y. is computed as

N
L(Xp|pe,) = == [Dlog(2m) + log(|Zc])+

tr (3575,) + (p — pe) "S5 (pp —)], (2)

where the superscript 7' denotes a transposition.
Once observations are assigned to a cluster, the ML pa-
rameter estimate given P sets of observations are

P

1
MPe = = Z Nppp (3)
Zq:l Nq p=1
1 P
Y=o Np (Ep + l‘pllzq; - Ncﬂg) (4)
quzl N‘I ;;

Starting from a single cluster, the cluster inventory is in-
creased by binary divisive clustering. Iteratively, the cluster
with the lowest average likelihood per frame is selected to be
split. Two new clusters are defined by first obtaining an ini-
tial split by perturbing the cluster mean, and then running
anumber of binary K-means clustering iterations using only
the data that was contained in the original cluster before
splitting. Clusters with fewer observations than a minimum
occupancy threshold are not considered for splitting. After
the cluster inventory is increased up to a heuristically de-
termined inventory size, a number of K-means iterations
using all the data and the full cluster inventory are run. If
any cluster during this stage has fewer observations than
the minimum occupancy threshold, the cluster is removed
from the inventory and the data previously held within that
cluster is repartitioned over the remaining clusters. The
clustering algorithm derives the final unit model inventory
by alternating between divisive and K-means iterations, in-
creasing the number of clusters in stages.

The final data partition over the cluster inventory defines
the lexicon by virtue of the data grouping. When neighbor-
ing segments within a lexical entry are assigned to the same
cluster, the segments are collapsed into a single entry in the
lexicon. As the units assume a constant mean uni-modal
Gaussian distributions, repetitions of the same unit label in
the lexicon are equivalent to a single instance of the label.
Segments that were found distinct in acoustic segmentation
can be found equivalent after the quantization introduced
by clustering. During this step, some temporal resolution
is lost relative to the temporal resolution of the acoustic
segmentation.

2.2. Re-training

The initial acoustic segmentation was optimal given an un-
constrained model inventory (size S for S segments), as
model parameters in acoustic segmentation are derived sep-
arately for each instance of a segment in the DP search. Af-
ter clustering, the acoustic space is quantized into C models
with C << S, making acoustic segmentation suboptimal.
To achieve a matched condition between the unit model in-
ventory and the segmentation, a retraining algorithm can
be used, either Viterbi or Baum-Welch. The Viterbi train-
ing algorithm, used here, iteratively re-segments the data
to find the optimal segmentation given the current unit
model inventory and then re-estimates unit model param-
eters using the new segmentation. Given a lexicon con-
sisting of linear pronunciation strings derived by the algo-
rithm described in 2.1, a lexical-entry-level transcription
can be expanded into an S-length unit-level transcription
{u1,---,us}. The segmentation step involves recursive up-
dating for every time ¢ and every unit index i € {1,---, L}
of

U(td) = max W(r—1i—1)+logp(zr, -, z|ui, i)
(5)

where p; and ¥; denote the mean and covariance of unit i.
In addition to updating ¥(¢,4) the index 7 that maximizes
equation 5 is stored allowing the most likely segmentation
to be found in the end by tracing back. The unit model
parameters are re-estimated from this new segmentation
using standard ML estimation.

2.3. Increasing system complexity

One way to derive a high complexity system is to derive
a large unit inventory by a single divisive clustering run,
starting from the segment boundaries derived by acoustic
segmentation. Alternatively, one could run Viterbi train-
ing after an intermediate size unit inventory is designed, re-
estimate the atomic group sufficient statistics, and continue
divisive clustering to increase the inventory using these new
statistics. In preliminary experiments, we found that bet-
ter results were obtained using this second approach. Once
one has the intermediate size inventory and new sufficient
statistics, the system complexity can be increased in three
ways, as described next.

1. High complexity ASWU system

After convergence of the Viterbi training algorithm, new
lexical position-dependent atomic group sufficient statistics
are computed based on the new segment boundaries. The
ML clustering processes can then be started using the unit
model inventory derived by Viterbi training as the initial
cluster representatives. The unit inventory can be expanded
using ML clustering (divisive followed by K-means) and re-
fined using Viterbi training. Iterative application of ML
clustering and Viterbi training appears to give better per-
formance, keeping the segment boundaries near optimal.

2. Unconstrained CD-ASWU system
Given the success of explicitly modeling context in a phone-
based system, another approach to increase the complexity
of an ASWU-based system is by estimating parameters of

context dependent ASWU (CD-ASWU) models. Given the
segmentation of the low complexity system, atomic group
sufficient statistics can be computed for each unit in each
unique left and right context. A high complexity system
can then be derived as in the ASWU case by iterative ML
clustering and Viterbi training.

3. Center constrained CD-ASWU system
This approach is very similar to the unconstrained CD-
ASWTU system in that atomic group sufficient statistics are
computed for each unit in each unique left and right con-
text. The difference is that only parameter sharing among
unit models with the same center unit are allowed. This
constraint is equivalent to the approach used in phone-
based systems where only parameter sharing among the
same state of context dependent models with the same cen-
ter phone are allowed. The center constrained CD-ASWU
training is implemented by running an ML clustering run
for each center unit. The unit inventory is increased by use
of divisive clustering until the average likelihood per frame
exceeds a heuristically set threshold or all cluster occupan-
cies fall below the minimum occupancy threshold. Then
a number of K-means iterations are run removing clusters
that have fewer observations than the minimum occupancy.

2.4. Temporal resolution refinement

The iterative ML clustering and Viterbi training approach
is beneficial as it allows retaining near optimal segment
boundaries in the unit inventory design algorithm. A prob-
lem it introduces however is that throughout the unit de-
sign, the temporal resolution of the system decreases. When
neighboring units within a lexical entry are clustered in the
same cluster, they are merged to form a single unit caus-
ing loss of temporal resolution. Note that segments merged
given a low complexity system unit inventory might not
have been merged given a high complexity system unit in-
ventory.

One approach to avoid this problem is to set the thresh-
old that controls the temporal resolution in the first uncon-
strained acoustic segmentation so that a very high temporal
resolution is obtained, compensating for the loss in tempo-
ral resolution incurred during the unit inventory design al-
gorithm. A possible problem with this approach is that it
might result in poor decisions on parameter sharing during
the clustering stage. Another approach to circumvent the
problem of the loss of temporal resolution is to increase the
temporal resolution by splitting the segments derived after
a Viterbi training stage. By use of acoustic segmentation, as
described in section 2.1, each segment in the Viterbi train-
ing segmentation can be split. New atomic group sufficient
statistics can then be computed for the new segmentation,
and a new lexicon can be defined by running one or more
K-means clustering iterations (i.e. partition the new set
of atomic group sufficient statistics over the existing unit
model inventory). Successive identical units will be merged
as before, so the effective increase in pronunciation length
is much less than a factor of two.

3. EXPERIMENTS

Experiments were conducted on the DARPA Resource Man-
agement (RM) database [9], which is a read speech corpus

with a 1000 word vocabulary. Although the proposed algo-
rithm is developed to attack the increased acoustic variabil-
ity problem in spontaneous speech corpora, initial experi-
ments were conducted on the smaller RM corpus to inves-
tigate the viability of the algorithm and explore different
options at a lower experimental cost.

The pre-defined 109 speaker training set of approximately
228 min of speech was used as training material for unit in-
ventory and lexicon design. The pre-defined February 1989
test set containing 300 utterances was used as a develop-
ment test set. The 4 available test sets (feb89, oct89, feb91
and sep92) were used for some of the trained systems, and
the average of the 4 results will be referred to as the full test
set performance. The word-pair grammar provided with the
RM database was used in the search.

Feature vectors were computed every 10 ms and included
12 Mel-warped cepstral coefficients and normalized energy
and their first and second order differences (39 dimensions
in total). The speech signal was windowed using a Ham-
ming window of 25 ms, and a first order pre-emphasis filter
(0.97) was applied.

The word recognition performance is derived from a DP
word-level string alignment of the recognizer output to the
reference transcription. Denoting the number of correct
labels as H, the number of insertions as I and the total
number of labels in the reference transcription as IV, the %
correct figure is defined as H/N x 100% and the % accuracy
figure is defined as (H — I)/N x 100%.

3.1. Phone systems

For performance comparisons, a phone-based HMM system
was trained using the HTK toolkit [10]. The 48 phone set
and lexicon provided with the RM database were used. The
HMDMs had a 3 state left-to-right topology without allow-
ing skips. Starting from context-independent (CI) model
parameter estimates derived from the TIMIT database, 4
Baum-Welch (BW) training iterations were performed to
derive a 145 state CI system. These models were then
cloned for each unique phone context (expanded to a tri-
phone system), and 2 BW training iterations were run to
train the 2254 state system. Two parameter sharing tech-
niques were used on the 2254 triphone models. One in-
volved agglomerative clustering, resulting in 1875 distribu-
tions, and the other used tree-based clustering, which gave
1557 distributions.

The recognition performance on the February 1989 test
set is given in table 1. The performance of the CI phone
system on the full test set was 75.6% accuracy. The per-
formance of both the agglomerative-clustered and tree-
clustered triphone systems on the full test set was 89.1%
accuracy.

3.2. ASWU systems

To derive an ASWU unit model inventory and lexicon, the
algorithm described in section 2.1 was applied. The thresh-
old in the unconstrained acoustic segmentation was set so
that the resulting segmentation contained approximately 3
acoustic segments per phone. This gives a temporal res-
olution comparable to the phone-based systems, and pre-
liminary experiments using coarser segmentations showed
performance degradation. Variances for the acoustic seg-

System Number of | Performance
states Y%acc. (%cor.)
Context Independent 145 75.6 (77.9)
Triphones 2254 87.5 (89.6)
Agglomerative clustered 1875 90.2 (90.9)
triphones
Tree-based clustered 1557 90.0 (90.5)
triphones

Table 1. HMM system results on the February 1989
test set for different system configurations.

mentation were computed on a per utterance basis. During
the ML clustering stage, the minimum cluster occupancy
was set to 100 frames; clusters with fewer observations were
removed.

One set of experiments used progressive refinement to ob-
tain a series of unit inventories of different sizes. First, a 124
unit model inventory and corresponding lexicon was derived
in 5 stages of alternating divisive and K-means clustering,
followed by 3 iterations of Viterbi training. Then, the size
of the unit inventory was increased up to 646 units by 2
iterations of ML clustering (5 and 7 stages of alternating
divisive and K-means clustering) and Viterbi training (2 it-
erations). The temporal resolution was then increased by
splitting all segments in the final Viterbi segmentation in
two and reclustering, as described in section 2.4. After low
frequency clusters were removed, the size of the unit inven-
tory was 635. This unit inventory and the corresponding
lexicon were then used in 2 iterations of Viterbi training.
Finally the size of the unit inventory was further increased
to 1385 by one more ML clustering and Viterbi training
step. The recognition performance in terms of %correct
and %accuracy for the different system configurations are
depicted in figure 1.

92 T T

E— 9%Accuracy e
-— - %Correct -

Y%Accuracy/%Correct

76 I I I I I I I
124v 342C 342v 646C 646V 635C 635V 1385C 1385V
System type

Figure 1. Recognition performance on the February
1989 test set using unit inventories and lexicons de-
rived at different stages of progressive refinement.
System type indicates the number of units and is
appended with either a C for the system after clus-
tering or a V for the system after Viterbi training.

In another thread of the same experiment, we looked at

the effect of changing the point of temporal splitting in the
progressive refinement steps. The 646 unit inventory was
expanded, without temporal splitting, to a size of 1147 units
by an additional ML clustering and Viterbi training step.
The temporal resolution was then increased by splitting the
segments in two through acoustic segmentation, and 5 iter-
ations of K-means clustering were run. The resulting inven-
tory, which included 1098 units after low frequency clusters
were removed, was then refined using 2 passes of Viterbi
training. Using the 1147 unit model inventory and lexicon
for recognition of the February 1989 test set resulted in a
86.9% accuracy (88.8% correct), while the final 1098 unit
inventory and lexicon resulted in a 90.4% accuracy (91.3%
correct), confirming that temporal refinement is an impor-
tant step. In addition, the 1098 unit inventory gave perfor-
mance comparable to the 1385 unit inventory, suggesting
that temporal splitting need not be early in the refinement
process.

The performance of the 124 and 1385-unit Viterbi trained
ASWU systems on the full test set was 74.1% accuracy and
89.3% accuracy, respectively.

3.3. CD-ASWU systems

Three CD-ASWU experiments were conducted to test the
effect of unconstrained vs. constrained clustering and size
of the base inventory. The base inventory (either 124 or 635
units) was expanded by considering “tri-units” to be units
conditioned on the unit label of their left and right neigh-
bor. Atomic group sufficient statistics were computed for
these context-dependent units for use in subsequent clus-
tering. As in previous experiments, clusters with less than
100 observations were eliminated in all ML clustering steps.

First, a 124-unit ASWU system was used as the start-
ing point for an unconstrained CD-ASWU system. After
context expansion, 6331 unique (atomic) units in context
were found. The unit inventory was increased to 1519 units
by 3 iterations of ML clustering and Viterbi training. The
recognition performance on the February 1989 test set is
depicted in figure 2. In this case, Viterbi training actually
hurt performance for the largest inventory. The best system
gave 86.3% accuracy.

The unconstrained clustering system with 1519 units can
be compared to a system designed using center-constrained
clustering, again starting from the 124-unit ASWU system.
The resulting 1262 unit inventory was based on divisive
clustering, followed by 5 iterations of K-means clustering,
followed by 2 iterations of Viterbi training. The recogni-
tion performance of the final system on the February 1989
test set was 84.8% accuracy. Extrapolating from the per-
formance of the unconstrained case, there appears to be
no advantage to center-constrained clustering and possibly
some performance degradation.

Finally, the 635-unit ASWU system was used as the start-
ing point for a unconstrained CD-ASWU system. After
context expansion of the 635 unit inventory segmentation,
12943 unique units in context were found. The unit inven-
tory was increased to 1382 units by 2 iterations of ML clus-
tering and Viterbi training. The recognition performance
of the final system on the February 1989 test set was 89.3%
accuracy, which outperforms the unconstrained case start-
ing from 124 units. The key differences that might explain

89 T T

_— Y%Accuracy T~
-—- %Correct 4 -

88 s -

87 , i

%Accuracy/%Correct
@ ©
& &

@
S

83

82

81 I I I I
334C 334V 747C 747V 1519C 1519V
System type

Figure 2. Recognition performance on the Febru-
ary 1989 test set using unit inventories and lexicons
derived at different stages of the unconstrained CD-
ASWU training algorithm. System type indicates
the number of units and is appended with either
a C for the system after clustering or a V for the
system after Viterbi training.

the improved performance are that the start from 635 units
has incorporated temporal refinement and the number of
atomic groups is larger when starting from 635 units. The
context-dependent 1382-unit system can be compared to
the 1385-unit system where the atomic groups are depen-
dent on lexical position rather than unit context. Lexical
position dependence gives better performance, 90.1% vs.
89.3% accuracy, but this may be explained by the larger de-
grees of freedom in clustering by having 30k vs. 13k atomic
groups.

4. DISCUSSION

The proposed automatic unit inventory and lexicon design
algorithm performs comparable to or better than a phone-
based system. At low complexity, the 124-unit ASWU sys-
tem is comparable to the 128-unit system described in [7]
and to the 145-state CI phone-based HMM system. At
high complexity, the best ASWU system performs compa-
rable to the best triphone system. Using fewer constraints
in the unit inventory and lexicon design algorithm when
increasing the complexity of the system results in better
performance. For both the unconstrained ASWU as well
as the CD-ASWU systems, increased temporal resolution
resulted in better system performance, indicating the im-
portance of the temporal resolution in the system design.
The particular stage in inventory design for increasing tem-
poral resolution did not appear to be an important factor.

The comparable performance of the low complexity sys-
tem with the results of [7] demonstrates that the con-
strained unit design approach is competitive with previous
ASWU work. The performance at high complexity, compa-
rable to a triphone system, shows the robustness of the al-
gorithm for large unit inventories. Given that phone-based
systems represent the state-of-the-art in read speech tasks,
especially at high system complexity, the comparable per-

formance of the ASWU-based system shows the viability of
the proposed algorithm. In spontaneous speech recognition
tasks, the ASWU-based system is expected to perform bet-
ter than a phone-based system using standard baseforms,
since speakers use canonical pronunciations much less fre-
quently in casual speech. It remains to be seen, however,
whether the use of ASWUs will outperform phone-based
systems with complex pronunciation models.

Acknowledgments

This work was supported by ATR Interpreting Telecommu-
nications Laboratory.

REFERENCES

[1] C.H.Lee, B.-H Juang, F. K. Soong and L. Rabiner,
“Word recognition using whole word and subword
models,” Proc. Int. Conf. on Acoust., Speech and Sig-
nal Proc., vol. 1, pp. 683-686, 1989.

[2] T. Svendsen, K.K. Paliwal, E. Harborg and P.O.
Husgy, “An improved subword based speech recog-

nizer,” Proc. Int. Conf. on Acoust., Speech and Signal
Proc., vol. 1, pp. 108-111, 1989.

[3] L. R. Bahl, P.F. Brown, P. V. de Souza, R. L. Mercer
and M. A. Picheny, “A Method for the Construction
of Acoustic Markov Models for Words,” IEEE Trans.
Speech and Audio Processing, vol. 1, no. 4, pp. 443-452,
1993.

[4] M. Bacchiani, M. Ostendorf, Y. Sagisaka and K. Pali-
wal, “Design of a Speech Recognition System based on
Non-Uniform Segmental Units,” Proc. Int. Conf. on
Acoust., Speech and Signal Proc., vol. 1, pp. 443-446,
1996.

[6] K.K. Paliwal, “Lexicon building methods for an acous-
tic sub-word based speech recognizer,” Proc. Int. Conf.
on Acoust., Speech and Signal Proc., vol. 2, pp. 729-
732, 1990.

[6] T. Svendsen, F. K. Soong and H. Purnhagen, “Opti-
mizing baseforms for HMM-based speech recognition,”
Proc. European Conf. on Speech Commun. and Tech-
nology, vol. 1, pp. 783-786, 1995.

[7] T. Holter and T. Svendsen, “Combined Optimisation
of Baseforms and Model Parameters in Speech Recog-
nition Based on Acoustic Subword Units,” Proc. IEEE
Workshop on Automatic Speech Recognition, pp. 199-
206, 1997.

[8] A. Kannan and M. Ostendorf, “A comparison of con-
strained trajectory models for large vocabulary speech
recognition,” IEEE Trans. Speech and Audio Process-
ing, to appear May 1998.

[9] P. Price, W. M. Fisher, J. Bernstein, D.S.Pallett, “The
DARPA 1000-Word Resource Management Database
for Continuous Speech Recognition,” Proc. Int. Conf.
on Acoust., Speech, Signal Proc., vol. 1, pp. 651-654,
1988.

[10] HTK, version 2.1, Cambridge University, 1997.

