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ABSTRACT

An algorithm is proposed to build large, highly detailed
acoustic models for context dependent units using a limited
amount of training data. Robustness of the parameter esti-
mates in face of data sparsity is addressed by using MAP
distribution smoothing. Context dependent distributions are
first clustered using a decision tree-based algorithm with an
ML objective. These decision trees are then extended using
a MAP objective. Experimental results show an absolute
reduction in the word error rate of 0.7% by extending an ex-
isting state of the art ML trained context dependent model.

1. INTRODUCTION

Most state of the art speech recognition systems use Hidden
Markov Models (HMM) to model phonetic sub-word units.
Since the acoustic realization of these sub-word units are
dependent on the neighboring units, accurate acoustic mod-
els can be constructed by explicitly modeling the acoustic
context in terms of the identities of the neighboring units.
More specifically, most systems model triphones where the
acoustic context is defined in terms of the identity of the
phonetic units directly proceeding and following. Modeling
context explicitly also introduces a data sparsity problem.
Even if a moderate sized phonetic unit inventory (say 50
units) is used, the requirement to have sufficient examples
of every possible triphone for density estimation becomes
prohibitive. To circumvent this requirement, systems use
distribution clustering to define a set of distributions which
are shared among all possible context dependent models.

In earlier implementations of distribution clustering, tied-
mixture modeling [1] was widely used. In the tied-mixture
approach a single codebook of mixture components is trained
and distributions are defined as mixtures of Gaussians using
distribution specific mixture weights for the mixture com-
ponents defined in the common codebook. An extension
of this approach is the phonetic tied mixture system where
phone specific codebooks are used[2]. Further extension
leads to the state clustering approach used in most current
speech recognition systems. In this approach all tied con-
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ediate nodes in the decision tree where relatively

ols of data are available. Leaf distributions are then
y leaf specific weight vectors across the codebook

ents of the ancestor node. As the leaf specific data is
estimate the mixture weights alone and the param-
the mixture components are estimated on a larger
ata, the resulting leaf distributions are robust.
ore recent work, the tied-mixture or state cluster-
s were extended with use of linear transformations
debooks or state clusters at the leafs are obtained

linear transformation of the parameters of a code-
state cluster higher up in the tree [6, 7]. Since

ber of free parameters in a linear transformation is
aller than in an additional codebook or state cluster,
timates can be obtained using little training data.

ther approach to obtain robust parameter estimates
e number of distributions given a limited amount
ng data is to use parameter smoothing based on
m a posteriori (MAP) estimation. In [8] context de-
distributions are derived by MAP estimation using
ext independent distribution as a prior. The context
ent distributions are trained on a large amount of
data as compared to the training data available to
rved context dependent models. Using the obser-
of the context dependent units and smoothing the
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robust estimates of the model parameters.
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cision tree-based state clustered system is refined
ing larger decision trees. Then, to ensure robust
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ring is implemented between similar leafs (as de-



fined by a similarity measure between leaf distributions).
In this paper, a similar system refinement approach as

that of [10] is proposed. Starting from an initial decision
tree-based state clustered system, the decision trees are ex-
tended, however in contrast to [10], robustness of the pa-
rameter estimates at the leaf nodes is ensured by use of the
larger pool of data higher up in the tree. In this respect,
the approach is similar to that of tied mixtures. In contrast
to both the soft tying and tied-mixture approaches, the pro-
posed algorithm uses MAP estimation to obtain smoothed
leaf distributions. Leaf distributions of the extended tree are
smoothed against the distribution of the ancestor node that
was a leaf node in the initial tree.

2. ALGORITHM

The most commonly used distribution sharing technique uses
decision trees. A decision tree is constructed for each con-
text independent phone state. The decision trees define the
inventory of shared distributions and define a mapping from
all possible context dependent realizations to the shared dis-
tributions. Let d � Tp�C� denote that context C for phone
state p maps to distribution d. Furthermore, let the set of
shared distributions be denoted asD and the set of all possi-
ble contexts as C. The decision tree growing algorithm de-
signs the mappings Tp�C� using the training data likelihood
given the Maximum Likelihood (ML) estimated models of
D. Although Gaussian mixture densities are used for the
state emissions of D, Gaussian distributions are used in the
tree design because they admit the use of finite size suffi-
cient statistics and a closed form solution for the likelihood
ratios to evaluate the decisions[4].

The decision tree state clustering algorithm first com-
putes sufficient statistics for all the unique context depen-
dent units observed in the training data. Let Sp with Sp �
C denote the set of observed contexts of state p. The set
of sufficient statistics is then partitioned according to pho-
netic class membership questions about the unit contexts.
The partitioning is performed iteratively in a greedy fash-
ion, evaluating the merit of a partitioning step by likelihood
ratios of the data modeled by the ML parent and child dis-
tributions. After the sharing configuration is defined, the
training data is used to estimate Gaussian mixtures for the
shared distributions, again using the ML criterion (usually
using the Expectation-Maximization (EM) algorithm).

To ensure sufficient training data for each shared dis-
tribution in the mixture estimation phase, the decision tree
clustering algorithm is constrained to ensure a minimum
number of observations at each leaf node. Unless the design
intends to trade off system size for accuracy, the leaf occu-
pancy threshold needs to balance modeling detail and gen-
eralization of the shared distributions. If the leaf occupancy
threshold is too large, the number of shared distributions is
too small and the model lacks detail. If the leaf occupancy
threshold is too small, the number of shared distributions is
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��� o���� � � � � o�T �g and model parameters�. Us-
posterior probabilities, the statistics

�p�s�m �

TX

t��

�Tp�s��m�t�� (1)

�p�s�m �

PT

t�� �Tp�s��m�t�o�t�PT

t�� �Tp�s��m�t�
(2)

p�s�m �

PT

t�� �Tp�s��m�t�diag�o�t�o�t�T �
PT

t�� �Tp�s��m�t�
(3)

puted for all mixture components m of all phone
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obabilities based on the tied-mixture distributions.
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the decision trees are grown further, again parti-
the data on the basis of phonetic set membership
s about the unit contexts. The merit of a question
aluated on the basis of likelihood ratio tests as be-

wever, instead of using ML estimation of the new
ributions, MAP estimation is used instead. Con-

leaf distribution d of phone state p. A context
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for the mixture weights, means and variances are derived
following [8, 9] as
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with
	 � diag���ad�m � ��qd�m���ad�m � ��qd�m�

T �

and

 � rqm � �diag�fqm��qTd�m� � nqmdiag���qd�m��qTd�m�

and �ad�m , �ad�m and �ad�m denoting the mixture weight,
mean and variance of the ancestor node distribution and Md

denoting the number of mixture components in the distri-
bution. The � parameters are of the conjugate prior density
and will affect how quickly the mode of the posterior dis-
tribution moves to the ML estimate with more observations.
If the � parameters are all set to zero, the algorithm reduces
to the ML tree building algorithm used in the design of the
initial tree. If all the � parameters are set to �� the like-
lihood ratio of any proposed question will be one and the
initial tree will not be extended any further. Note that un-
like in the ML tree building algorithm, no leaf observation
thresholds need to be imposed as the MAP smoothing will
back off to a valid distribution (the prior) if no observations
are available.

3. EXPERIMENTAL RESULTS

The algorithm was tested on a Voicemail recognition task
as described in [11] although another training and test set
partition was used. The data set available for training con-
sists of approximately 98 hours of speech. The corpus was
manually transcribed at the word level. The messages were
collected from 137 voice mailboxes of AT&T Lab - research
employees at our Florham Park site. The training set con-
tained 4375 messages from 1468 male speakers and 4716
messages from 1096 female speakers. As assessed by the
transcribers, 8290 messages were from regular handsets, the
remaining messages were from other types of telephones
such as cellular or speakerphones. Also by assessment of
the transcribers, 7993 messages were from native speakers.
The training corpus consists of 942272 word tokens from
13990 unique words. The test set consists of 2.5 hours of
speech containing 27225 word tokens. The recordings were
digitized at a sampling rate of 8kHz and encoded as 8-bit
�-law samples.

An initial dictionary was constructed using the AT&T
Labs NextGen Text To Speech system for all unique words
observed in the training set. The final dictionary was then
produced by hand editing. The dictionary used 42 phonemic
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speech was parameterized using Mel frequency cep-
fficients. The feature vectors consisted of 12 cep-
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order derivatives (39 dimensional features). The
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ance peaks for the 27k distribution system provid-
% absolute improvement in the word error rate over
line system.



�w Word Error Rate (%)

0 27.7
10 27.3
20 27.3

100 27.4

Table 2. Word error rate of systems trained with different
�w parameters but with a fixed number of leafs (27k). Only
mixture weight and mean parameters are obtained by MAP
estimation, variances are fixed.

�v Word Error Rate (%)

100 27.4
200 27.3
300 27.4
400 27.4

Table 3. Word error rate of systems trained with different
�v parameters but with a fixed number of leafs (27k) and
the �w parameter fixed at 10. Mixture weights, mean and
variance parameters are obtained by MAP estimation.

Table 2 shows the word error rate of a 27k distribution
system when the �w parameter is varied but the number of
leaf distributions is kept fixed. In this experiment, the vari-
ance is again kept fixed. The results shows that ML estima-
tion of the weights and means (�w � �) provides little gain
over the baseline system in contrast to the MAP estimated
systems.

Table 3 shows the word error rate of a 27k distribution
system with the �w parameter fixed at 10 but now including
variance estimation. The table shows the performance of the
system when varying the �v parameter. It can be observed
that variance estimation does not provide any additional per-
formance gains.

4. CONCLUSION

The proposed algorithm takes advantage of the MAP train-
ing algorithm to allow the estimation of a large acoustic
model with limited training data. An absolute improvement
of 0.7% in the word error rate on a voicemail transcription
tasks over a state of the art ML trained model shows the vi-
ability of the proposed algorithm. The experimental results
show the most benefit from MAP smoothed estimates of the
mixture weights and means and no additional benefit from
re-estimation of the variances. ML re-estimation of mix-
ture weight and mean parameters alone does not perform as
well as MAP re-estimation of those parameters showing the
benefit from smoothing with the prior distribution.
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